论文标题
评估图形神经网络中的逻辑概括
Evaluating Logical Generalization in Graph Neural Networks
论文作者
论文摘要
最近的研究强调了关系归纳偏见在建立可以以组成方式推广和推理的学习剂中的作用。但是,尽管关系学习算法(例如图形神经网络(GNN))表现出希望,但我们不理解这些方法如何有效地适应新任务。在这项工作中,我们通过设计基于一阶逻辑的基准套件来研究逻辑概括的任务。我们的基准套件GraphLog要求学习算法在不同的合成逻辑中执行规则归纳,称为知识图。 GraphLog由57个不同逻辑域上的关系预测任务组成。我们使用GraphLog来评估三种不同的设置中的GNN:单任务监督学习,多任务预处理和持续学习。与以前的基准不同,我们的方法使我们能够精确控制不同任务之间的逻辑关系。我们发现,模型概括和适应的能力取决于训练过程中遇到的逻辑规则的多样性,我们的结果突出了GNN模型设计的新挑战。我们在https://www.cs.mcgill.ca/~ksinha4/graphlog上公开发布了用于生成数据集和与数据集进行交互的数据集和代码。
Recent research has highlighted the role of relational inductive biases in building learning agents that can generalize and reason in a compositional manner. However, while relational learning algorithms such as graph neural networks (GNNs) show promise, we do not understand how effectively these approaches can adapt to new tasks. In this work, we study the task of logical generalization using GNNs by designing a benchmark suite grounded in first-order logic. Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics, represented as knowledge graphs. GraphLog consists of relation prediction tasks on 57 distinct logical domains. We use GraphLog to evaluate GNNs in three different setups: single-task supervised learning, multi-task pretraining, and continual learning. Unlike previous benchmarks, our approach allows us to precisely control the logical relationship between the different tasks. We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training, and our results highlight new challenges for the design of GNN models. We publicly release the dataset and code used to generate and interact with the dataset at https://www.cs.mcgill.ca/~ksinha4/graphlog.