论文标题
沿着动态不精确概率运动学的奇异定理
Ergodic Theorems for Dynamic Imprecise Probability Kinematics
论文作者
论文摘要
我们为(几乎确定的)限制$ \ MATHCAL {p}^\ text { Kinematics(DIPK,在Caprio和Gong,2021中引入)的更新$ \ Mathcal {p}^\ text {co} _ {\ Mathcal {e} _0} $代表代理的初始信念。结果,我们制定了大量的强大定律。
We formulate an ergodic theory for the (almost sure) limit $\mathcal{P}^\text{co}_{\tilde{\mathcal{E}}}$ of a sequence $(\mathcal{P}^\text{co}_{\mathcal{E}_n})$ of successive dynamic imprecise probability kinematics (DIPK, introduced in Caprio and Gong, 2021) updates of a set $\mathcal{P}^\text{co}_{\mathcal{E}_0}$ representing the initial beliefs of an agent. As a consequence, we formulate a strong law of large numbers.