论文标题

PG(2,Q)中排名第一的圆锥网,Q奇数

Nets of conics of rank one in PG(2,q), q odd

论文作者

Lavrauw, Michel, Popiel, Tomasz, Sheekey, John

论文摘要

我们将圆锥形的圆锥网中的圆锥网中的圆锥网络分类为有限顺序的有限磁场,即包含重复线的圆锥形的二维线性系统。我们的证明是几何的,从某种意义上说,我们解决了在$ \ text {pg}(5,q)$中对飞机轨道进行分类的等效问题,这些问题至少在一个点上与Quadric veronesean符合,在$ \ text {pgl}(pgl}(3,q)(3,q)\ leqslant \ exlant \ text \ text \ text pgl}(pgl}(q $ q)(6,q)(6,q)(6,q)(6,q)(Q)(6,q)(6,q)(6)我们的结果完成了A. H. Wilson在“模块化圆锥网的规范类型”中获得的排名第一圆锥网的部分分类,《美国数学杂志》 36(1914)187-210。

We classify nets of conics in Desarguesian projective planes over finite fields of odd order, namely, two-dimensional linear systems of conics containing a repeated line. Our proof is geometric in the sense that we solve the equivalent problem of classifying the orbits of planes in $\text{PG}(5,q)$ which meet the quadric Veronesean in at least one point, under the action of $\text{PGL}(3,q) \leqslant \text{PGL}(6,q)$ (for $q$ odd). Our results complete a partial classification of nets of conics of rank one obtained by A. H. Wilson in the article "The canonical types of nets of modular conics", American Journal of Mathematics 36 (1914) 187-210.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源