论文标题
从3D合成数据得出的高恰如精性面部深度模型
High-Accuracy Facial Depth Models derived from 3D Synthetic Data
论文作者
论文摘要
在本文中,我们探讨了如何使用合成生成的3D面模型来构建高精度的地面真相。这使我们能够训练卷积神经网络(CNN)解决面部深度估计问题。这些模型提供了对图像变化的复杂控制,包括姿势,照明,面部表情和摄像头位置。可以从这些模型中渲染2D训练样本,通常采用RGB格式以及深度信息。使用合成面部动画,可以为一系列图像框架以及地面真相深度和其他元数据(例如头摆,光方向等)渲染动态面部表达或面部动作数据。合成数据用于训练基于CNN的面部深度估计系统,在合成和真实图像上均已验证。应用的潜在领域包括3D重建,驱动程序监控系统,机器人视觉系统和高级场景理解。
In this paper, we explore how synthetically generated 3D face models can be used to construct a high accuracy ground truth for depth. This allows us to train the Convolutional Neural Networks (CNN) to solve facial depth estimation problems. These models provide sophisticated controls over image variations including pose, illumination, facial expressions and camera position. 2D training samples can be rendered from these models, typically in RGB format, together with depth information. Using synthetic facial animations, a dynamic facial expression or facial action data can be rendered for a sequence of image frames together with ground truth depth and additional metadata such as head pose, light direction, etc. The synthetic data is used to train a CNN based facial depth estimation system which is validated on both synthetic and real images. Potential fields of application include 3D reconstruction, driver monitoring systems, robotic vision systems, and advanced scene understanding.