论文标题

图形的间隔边缘着色不正确

Improper interval edge colorings of graphs

论文作者

Casselgren, Carl Johan, Petrosyan, Petros A.

论文摘要

图$ g $的$ k $ improper边缘着色是映射$α:e(g)\ longrightArrow \ mathbb {n} $,使得最多$ k $ g $ of $ g $的$ g $具有相同的颜色。图形$ g $的不正确的边缘着色被称为不正确的间隔边缘着色,如果边缘的颜色在每个顶点的$ g $ of $ g $形成一个积分间隔。在本文中,我们介绍并调查了一个新的概念,即将$ g $定义为最小$ k $的图形$ g $的间隔着色(或只是不当行为),以使$ g $具有$ k $ improper间隔边缘着色;我们用$μ_ {\ mathrm {int}}(g)$表示最小的$ k $。我们在$μ_ {\ mathrm {int}}(g)$上证明了上限,用于一般图$ g $,以及诸如双方,完整的多部分和外平面图等特定家庭;我们还确定$μ_ {\ mathrm {int}}}(g)$恰好适合属于某些特定类图的$ g $。此外,我们为几个图形家庭提供了巨大的不当行为。特别是,我们证明,对于每个正整数$ k $,都存在一个图$ g $,带有$μ_ {\ mathrm {int}}}}(g)= k $。最后,对于具有至少两个顶点的图形,我们证明了在不正确的间隔边缘着色中使用的颜色数量的新上限。

A $k$-improper edge coloring of a graph $G$ is a mapping $α:E(G)\longrightarrow \mathbb{N}$ such that at most $k$ edges of $G$ with a common endpoint have the same color. An improper edge coloring of a graph $G$ is called an improper interval edge coloring if the colors of the edges incident to each vertex of $G$ form an integral interval. In this paper we introduce and investigate a new notion, the interval coloring impropriety (or just impropriety) of a graph $G$ defined as the smallest $k$ such that $G$ has a $k$-improper interval edge coloring; we denote the smallest such $k$ by $μ_{\mathrm{int}}(G)$. We prove upper bounds on $μ_{\mathrm{int}}(G)$ for general graphs $G$ and for particular families such as bipartite, complete multipartite and outerplanar graphs; we also determine $μ_{\mathrm{int}}(G)$ exactly for $G$ belonging to some particular classes of graphs. Furthermore, we provide several families of graphs with large impropriety; in particular, we prove that for each positive integer $k$, there exists a graph $G$ with $μ_{\mathrm{int}}(G) =k$. Finally, for graphs with at least two vertices we prove a new upper bound on the number of colors used in an improper interval edge coloring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源