论文标题

噪声扰动的ODE的c-内正则化

C-infinity regularization of ODEs perturbed by noise

论文作者

Harang, Fabian A., Perkowski, Nicolas

论文摘要

我们研究了一般Schwartz分布给出的矢量场的ODES,我们表明,如果我们通过添加“无限正规化”路径来扰动这种方程,那么它具有独特的解决方案并诱导了无限平稳的差异性流动。我们还引入了一个标准,在该标准下,高斯过程的样本路径是无限正规化的,我们提出了满足我们标准的两个过程。结果基于当地时代的路径时空规则性特性,并使用基于非线性年轻积分的Catellier-Gubinelli的方法构建溶液。

We study ODEs with vector fields given by general Schwartz distributions, and we show that if we perturb such an equation by adding an "infinitely regularizing" path, then it has a unique solution and it induces an infinitely smooth flow of diffeomorphisms. We also introduce a criterion under which the sample paths of a Gaussian process are infinitely regularizing, and we present two processes which satisfy our criterion. The results are based on the path-wise space-time regularity properties of local times, and solutions are constructed using the approach of Catellier-Gubinelli based on non-linear Young integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源