论文标题
Minkowski张量在移动媒体的电动力学和爱因斯坦特殊相对论中物理张量的三个规则
Minkowski tensor in electrodynamics of moving media and three rules for construction of the physical tensors in Einstein's special relativity
论文作者
论文摘要
Minkowski将爱因斯坦的相对论原则应用于移动媒体,并开发了移动媒体的电动力学。像爱因斯坦(Einstein)一样,引入了电场$ \ MATHBF {E} $和磁性感应$ \ Mathbf {b} $的EM Field-strength tensor $ f^{μν} $,Minkowski引入了另一个EM Field-STRENTER TENSOR $ g^{μmmantential$ g^{μ $ \ mathbf {h} $;因此导致Minkowski张量。最近,Partanen和Tulkki批评Minkowski张量与特殊的相对论相矛盾,并提出了一种质量 - 二利压力 - 能量 - 能量 - SEM)张量来替代Minkowski Tensor。在本文中,基于对以前有关该主题的文献的仔细分析,(i)我有理由认为Minkowski Tensor是两个EM场强度张量的协变组合,因此从Minkowski Tensor获得的所有物理结果已经在两个EM EM em fielt EMP-Fielt-fielt-field trengthtenthtentent tensors中都体现; (ii)我提出了三个规则,用于在爱因斯坦的特殊相对论中构造物理张量的协变量,并遵循Minkowski Tensor遵循所有规则,而Abraham Tensor和MP SEM Tensor则没有。最后,通过列举一个特定的例子,我表明,张量的洛伦兹协方差不能保证张量与相对性原理的一致性。
Minkowski applied Einstein's principle of relativity to moving media and developed electrodynamics of moving media. Like Einstein introduced the EM field-strength tensor $F^{μν}$ for electric field $\mathbf{E}$ and magnetic induction $\mathbf{B}$, Minkowski introduced another EM field-strength tensor $G^{μν}$ for the electric displacement $\mathbf{D}$ and magnetic field $\mathbf{H}$; thus leading to Minkowski tensor. Recently, Partanen and Tulkki criticize that Minkowski tensor contradicts special relativity, and proposed a mass-polariton stress-energy-momentum (MP SEM) tensor to replace Minkowski tensor. In this paper, based on a careful analysis of previous literature on this topic, (i) I reasonably argue that Minkowski tensor is a covariant combination of two EM field-strength tensors, and thus all the physical results obtained from Minkowski tensor are already embodied in the two EM field-strength tensors; (ii) I propose three rules for covariantly and self-consistently constructing the physical tensors in Einstein's special relativity, with Minkowski tensor following all the rules while both Abraham tensor and the MP SEM tensor not. Finally, by enumerating a specific example I show that the Lorentz covariance of a tensor provides no guarantee of the consistency of the tensor with the principle of relativity.