论文标题

Scopeit:文档中的范围范围相关句子

ScopeIt: Scoping Task Relevant Sentences in Documents

论文作者

Suryanarayanan, Vishwas, Patra, Barun, Bhattacharya, Pamela, Fufa, Chala, Lee, Charles

论文摘要

当对话是同步且短暂时,诸如Cortana,Siri,Alexa和Google Assistant等智能助手将接受培训以解析信息;但是,对于基于电子邮件的对话代理人,通信是异步的,并且通常包含与助手无关的信息。这使系统更难准确检测意图,提取与这些意图相关的实体,从而执行所需的动作。我们提出了一个神经模型,用于从大查询中为代理商范围内的相关信息。我们表明,当用作预处理步骤时,该模型会提高意图检测和实体提取任务的性能。我们演示了模型对调度程序的影响(Cortana是代理的角色,而调度程序是服务的名称。我们在本文的上下文中互换使用它们。) - 虚拟会话会议计划助手通过电子邮件通过电子邮件与用户进行异步进行异步。该模型可帮助实体提取和意图检测任务通过调度程序所需的精确度达到35%的平均增益,而没有任何召回率下降。此外,我们证明可以将相同的方法用于大型文档中的组件级分析,例如签名块识别。

Intelligent assistants like Cortana, Siri, Alexa, and Google Assistant are trained to parse information when the conversation is synchronous and short; however, for email-based conversational agents, the communication is asynchronous, and often contains information irrelevant to the assistant. This makes it harder for the system to accurately detect intents, extract entities relevant to those intents and thereby perform the desired action. We present a neural model for scoping relevant information for the agent from a large query. We show that when used as a preprocessing step, the model improves performance of both intent detection and entity extraction tasks. We demonstrate the model's impact on Scheduler (Cortana is the persona of the agent, while Scheduler is the name of the service. We use them interchangeably in the context of this paper.) - a virtual conversational meeting scheduling assistant that interacts asynchronously with users through email. The model helps the entity extraction and intent detection tasks requisite by Scheduler achieve an average gain of 35% in precision without any drop in recall. Additionally, we demonstrate that the same approach can be used for component level analysis in large documents, such as signature block identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源