论文标题
四个维度的拓扑相变
Topological phase transitions in four dimensions
论文作者
论文摘要
我们表明,四维系统可能表现出类似于著名的Berezinskii-Kosterlitz-二维系统中无与伦比的涡旋旋转过渡的拓扑相过渡。还提出了预测相变的工程量子系统的实现。我们在四个维度和其耦合的重新归一化基团方程中研究了正弦 - 戈登模型的合适概括,表明该频率的临界值是$ 2D $的相应值的平方。确定了临界点上异常维度的值($η= 1/32 $),并提出了一个猜想的超氟刚度($ 4/π^2 $)的通用跳跃的猜想。
We show that four-dimensional systems may exhibit a topological phase transition analogous to the well-known Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional systems. The realisation of an engineered quantum system, where the predicted phase transition shall occur, is also presented. We study a suitable generalization of the sine-Gordon model in four dimensions and the renormalization group flow equation of its couplings, showing that the critical value of the frequency is the square of the corresponding value in $2D$. The value of the anomalous dimension at the critical point is determined ($η=1/32$) and a conjecture for the universal jump of the superfluid stiffness ($4/π^2$) presented.