论文标题

对中子星的非参数约束,现有的和即将进行的重力波和脉冲星观测

Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations

论文作者

Landry, Philippe, Essick, Reed, Chatziioannou, Katerina

论文摘要

对中子星的观察,无论是在二进制中还是孤立的,都提供了有关宇宙中最极端物质对象的内部结构的信息。在这项工作中,我们结合了来自最近观察结果的信息,以对中子恒星物质的性质进行关节约束。我们使用(i)通过重量脉冲星观测到的(ii)通过引力波中的潮汐特性的限制来获得的(i)较低限制,(ii)对潮汐性特性的限制,中子恒星二进制于它们合并时会发出,以及(iii)有关中子星的质量和radii通过X射线从表面热斑点获得的信息。为了结合这种不同的使者的信息,同时避免了参数推理方案的固有的建模系统学,我们采用基于核理论模型的高斯过程的状态过程中的中子星方程的非参数表示。我们发现现有的天文观测意味着$ r_ {1.4} = 12.32^{+1.09} _ { - 1.47} \,\ Mathrm {km {km} $,用于$ 1.4 \,m _ {\ odot}的半径$ P(2ρ_\ MathRm {nuc})= 3.8^{+2.7} _ { - 2.9} \ Times10^{34} \,\ Mathrm {dyn}/\ Mathrm {dyn}/\ Mathrm {cm}^2 $在90%核饱和密度的压力上,在90%的核饱和度密度的压力上为两倍。上限是由引力波观测驱动的,而X射线和重型脉冲星观测驱动了下限。此外,我们从潜在的未来天文观测中计算出预期的约束,发现它们可以共同确定$ r_ {1.4} $至$ {\ cal {o}}}(1)\,\ Mathrm {km} $和$ p(2ρ_\ MATHRM {nuc} $ to 80%至80%的相对不确定的五年。

Observations of neutron stars, whether in binaries or in isolation, provide information about the internal structure of the most extreme material objects in the Universe. In this work, we combine information from recent observations to place joint constraints on the properties of neutron star matter. We use (i) lower limits on the maximum mass of neutron stars obtained through radio observations of heavy pulsars, (ii) constraints on tidal properties inferred through the gravitational waves neutron star binaries emit as they coalesce, and (iii) information about neutron stars' masses and radii obtained through X-ray emission from surface hot spots. In order to combine information from such distinct messengers while avoiding the kind of modeling systematics intrinsic to parametric inference schemes, we employ a nonparametric representation of the neutron-star equation of state based on Gaussian processes conditioned on nuclear theory models. We find that existing astronomical observations imply $R_{1.4}=12.32^{+1.09}_{-1.47}\,\mathrm{km}$ for the radius of a $1.4\,M_{\odot}$ neutron star and $p(2ρ_\mathrm{nuc})=3.8^{+2.7}_{-2.9}\times10^{34}\,\mathrm{dyn}/\mathrm{cm}^2$ for the pressure at twice nuclear saturation density at the 90% credible level. The upper bounds are driven by the gravitational wave observations, while X-ray and heavy pulsar observations drive the lower bounds. Additionally, we compute expected constraints from potential future astronomical observations and find that they can jointly determine $R_{1.4}$ to ${\cal{O}}(1)\,\mathrm{km}$ and $p(2ρ_\mathrm{nuc})$ to 80% relative uncertainty in the next five years.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源