论文标题
使用机器视觉量化薄膜中的缺陷
Quantifying Defects in Thin Films using Machine Vision
论文作者
论文摘要
薄膜材料和设备缺陷的敏感性激发了对膜形态优化的广泛研究。这项研究可以通过自动实验来加速,这些实验表征了膜形态对合成条件的反应。光学成像可以解决薄膜中的形态缺陷,并且很容易整合到自动实验中,但是通过这种系统产生的大量图像需要自动分析。现有的方法来自动分析光学图像中膜形态的方法需要软件专家特定于应用程序的自定义,并且对图像内容或成像条件的变化并不强大。在这里,我们提出了一种用于薄膜图像分析的多功能卷积神经网络(CNN),该神经网络可以识别和量化多种缺陷的程度,并且适用于多种材料和成像条件。该CNN很容易适应新的薄膜图像分析任务,并将促进在自动薄膜研究系统中使用成像。
The sensitivity of thin-film materials and devices to defects motivates extensive research into the optimization of film morphology. This research could be accelerated by automated experiments that characterize the response of film morphology to synthesis conditions. Optical imaging can resolve morphological defects in thin films and is readily integrated into automated experiments but the large volumes of images produced by such systems require automated analysis. Existing approaches to automatically analyzing film morphologies in optical images require application-specific customization by software experts and are not robust to changes in image content or imaging conditions. Here we present a versatile convolutional neural network (CNN) for thin-film image analysis which can identify and quantify the extent of a variety of defects and is applicable to multiple materials and imaging conditions. This CNN is readily adapted to new thin-film image analysis tasks and will facilitate the use of imaging in automated thin-film research systems.