论文标题

SDVTRACKER:实时多传感器协会和自动驾驶汽车跟踪

SDVTracker: Real-Time Multi-Sensor Association and Tracking for Self-Driving Vehicles

论文作者

Gautam, Shivam, Meyer, Gregory P., Vallespi-Gonzalez, Carlos, Becker, Brian C.

论文摘要

对弱势道路使用者(VRU)的准确运动状态估计是在城市环境中导航的自动驾驶汽车的关键要求。由于其计算效率,许多传统的自治系统使用Kalman过滤器进行多个目标跟踪,这些Kalman过滤器经常依靠手工设计的关联。但是,这种方法无法推广到拥挤的场景和多传感器方式,通常会导致状态估计较差,而级联的预测不准确。我们提出了一种实用且轻巧的跟踪系统SDVTRACKER,该系统将深入的模型与相互作用的多重模型(IMM)过滤器结合使用,用于关联和状态估计。所提出的跟踪方法是快速,鲁棒的,并且在多个传感器模态和不同的VRU类中概括。在本文中,我们详细介绍了一个模型,该模型可以共同优化与新型损失,确定地面真相监督的算法以及训练程序的算法。我们显示,该系统在现实世界中的城市驾驶数据集上的手工设计方法明显优于手工设计的方法,同时在CPU上以100个演员的身份运行不到2.5毫秒的CPU,使其适合于低延迟和高准确性至关重要的自动驾驶应用。

Accurate motion state estimation of Vulnerable Road Users (VRUs), is a critical requirement for autonomous vehicles that navigate in urban environments. Due to their computational efficiency, many traditional autonomy systems perform multi-object tracking using Kalman Filters which frequently rely on hand-engineered association. However, such methods fail to generalize to crowded scenes and multi-sensor modalities, often resulting in poor state estimates which cascade to inaccurate predictions. We present a practical and lightweight tracking system, SDVTracker, that uses a deep learned model for association and state estimation in conjunction with an Interacting Multiple Model (IMM) filter. The proposed tracking method is fast, robust and generalizes across multiple sensor modalities and different VRU classes. In this paper, we detail a model that jointly optimizes both association and state estimation with a novel loss, an algorithm for determining ground-truth supervision, and a training procedure. We show this system significantly outperforms hand-engineered methods on a real-world urban driving dataset while running in less than 2.5 ms on CPU for a scene with 100 actors, making it suitable for self-driving applications where low latency and high accuracy is critical.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源