论文标题
一种新的方法,用于随机锥和多面体的弱收敛性
A new approach to weak convergence of random cones and polytopes
论文作者
论文摘要
提出了一种新的方法来证明随机多型在紧凑型凸集空间上的弱收敛性。这用于表明由$ n $独立和均匀分布的随机锥形镶嵌物的恢复后的schläfli随机锥体的轮廓,以$ \ mathbb {r}^{r}^{d+1} $薄弱地融合到典型的平台和同位素poisson poisson hypersellation $ ropplane tessellation $ ropplane tesselled $ $ n \ to \ infty $。
A new approach to prove weak convergence of random polytopes on the space of compact convex sets is presented. This is used to show that the profile of the rescaled Schläfli random cone of a random conical tessellation generated by $n$ independent and uniformly distributed random linear hyperplanes in $\mathbb{R}^{d+1}$ weakly converges to the typical cell of a stationary and isotropic Poisson hyperplane tessellation in $\mathbb{R}^d$, as $n \to \infty$.