论文标题

图,卷积和神经网络:从图形过滤器到图形神经网络

Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks

论文作者

Gama, Fernando, Isufi, Elvin, Leus, Geert, Ribeiro, Alejandro

论文摘要

网络数据可以方便地建模为图形信号,其中数据值被分配给描述基础网络拓扑的图形节点。从网络数据中成功学习是建立在有效利用此图结构的方法上的。在这项工作中,我们利用图形信号处理来表征图神经网络(GNN)的表示空间。我们讨论了图形卷积过滤器在GNNS中的作用,并表明任何使用此类过滤器构建的架构具有排列量比的基本属性和拓扑变化的稳定性。这两个属性提供了有关GNN的运作方式的见解,并有助于解释其可扩展性和可转移性属性,并与其本地和分布式性质相结合,为GNNS提供了在物理网络中学习的强大工具。我们还使用边缘变化和自回归的移动平均图过滤器引入GNN扩展,并讨论它们的属性。最后,我们研究了GNN在推荐系统中的使用,并学习用于机器人群的分散控制器。

Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源