论文标题

用于评估自动驾驶软件的机器学习环境

A machine learning environment for evaluating autonomous driving software

论文作者

Hanhirova, Jussi, Debner, Anton, Hyyppä, Matias, Hirvisalo, Vesa

论文摘要

自动驾驶汽车需要安全开发和测试环境。许多交通情况都无法在现实世界中进行测试。我们将混合影像现实主义模拟视为开发自动驾驶AI(人工智能)软件的可行工具。我们提出了一个机器学习环境,用于检测自动驾驶汽车角案例行为。我们的环境基于将Carla仿真软件连接到Tensorflow机器学习框架和自定义AI客户端软件。 AI客户端软件通过虚拟传感器接收来自模拟世界的数据,并使用机器学习模型将数据转换为信息。 AI客户在模拟世界中控制车辆。我们的环境监视了车辆AIS假定的状态,即从模拟模型中得出的地面真实状态。我们的系统可以搜索车辆AI无法正确理解情况的角案例。在我们的论文中,我们介绍了整体混合模拟器体系结构并比较不同的配置。我们介绍了来自真实设置的性能测量,并概述了影响混合模拟器性能的主要参数。

Autonomous vehicles need safe development and testing environments. Many traffic scenarios are such that they cannot be tested in the real world. We see hybrid photorealistic simulation as a viable tool for developing AI (artificial intelligence) software for autonomous driving. We present a machine learning environment for detecting autonomous vehicle corner case behavior. Our environment is based on connecting the CARLA simulation software to TensorFlow machine learning framework and custom AI client software. The AI client software receives data from a simulated world via virtual sensors and transforms the data into information using machine learning models. The AI clients control vehicles in the simulated world. Our environment monitors the state assumed by the vehicle AIs to the ground truth state derived from the simulation model. Our system can search for corner cases where the vehicle AI is unable to correctly understand the situation. In our paper, we present the overall hybrid simulator architecture and compare different configurations. We present performance measurements from real setups, and outline the main parameters affecting the hybrid simulator performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源