论文标题

二进制神经网络中的突触变性性

Synaptic Metaplasticity in Binarized Neural Networks

论文作者

Laborieux, Axel, Ernoult, Maxence, Hirtzlin, Tifenn, Querlioz, Damien

论文摘要

尽管深层神经网络在多种情况下超过了人类的表现,但它们容易遭受灾难性的遗忘:训练一项新任务,他们迅速忘记了以前学到的任务。神经科学的研究基于理想的任务,表明在大脑中,突触通过根据其过去的历史来调整其可塑性来克服此问题。但是,这种“化生”行为并未直接转移以减轻深层神经网络中的灾难性遗忘。在这项工作中,我们将二进制神经网络(一种低精度的深度神经网络版本,深度神经网络)所使用的隐藏权重解释为化学变量,并修改其训练技术以减轻遗忘。在这个想法的基础上,我们在多任务和流学习的情况下,在实验中提出并证明了一种训练技术,可减少灾难性的遗忘,而无需先前呈现的数据,也不需要数据集之间的正式界限,并且性能接近更多主流技术。我们通过对可容纳任务的理论分析来支持我们的方法。这项工作桥接了计算神经科学和深度学习,并为未来的嵌入式和神经形态系统提供了重要资产,尤其是在使用具有类似物理学的物理学的新型纳米版本时。

While deep neural networks have surpassed human performance in multiple situations, they are prone to catastrophic forgetting: upon training a new task, they rapidly forget previously learned ones. Neuroscience studies, based on idealized tasks, suggest that in the brain, synapses overcome this issue by adjusting their plasticity depending on their past history. However, such "metaplastic" behaviours do not transfer directly to mitigate catastrophic forgetting in deep neural networks. In this work, we interpret the hidden weights used by binarized neural networks, a low-precision version of deep neural networks, as metaplastic variables, and modify their training technique to alleviate forgetting. Building on this idea, we propose and demonstrate experimentally, in situations of multitask and stream learning, a training technique that reduces catastrophic forgetting without needing previously presented data, nor formal boundaries between datasets and with performance approaching more mainstream techniques with task boundaries. We support our approach with a theoretical analysis on a tractable task. This work bridges computational neuroscience and deep learning, and presents significant assets for future embedded and neuromorphic systems, especially when using novel nanodevices featuring physics analogous to metaplasticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源