论文标题

一个积极的学习框架,用于构建高保真迁移率图

An Active Learning Framework for Constructing High-fidelity Mobility Maps

论文作者

Marple, Gary R., Gorsich, David, Jayakumar, Paramsothy, Veerapaneni, Shravan

论文摘要

在给定的地形上提供最大可实现速度的移动图对于在越野环境中自动驾驶汽车的路径规划至关重要。尽管基于物理的模拟在创建下一代,高保真的移动图中起着核心作用,但它们却很繁琐且昂贵。例如,典型的模拟可能需要数周才能在超级计算机上运行,​​并且每个地图都需要数千个此类模拟。美国陆军CCDC地面汽车系统中心的最新工作表明,训练有素的机器学习分类器可以大大提高此过程的效率。但是,确定要进行哪些模拟以有效训练分类器仍然是一个空旷的问题。根据PAC学习理论,可以通过分类器分离的数据需要$ \ MATHCAL {O}(1/ε)$随机选择的点(仿真)以训练分类器的错误小于$ε$。在本文中,基于现有算法的基础,我们引入了一个主动学习范式,该范式大大减少了训练机器学习分类器所需的模拟数量而不牺牲准确性。实验结果表明,与随机抽样相比,我们的采样算法可以使用少于一半的模拟来训练具有更高精度的神经网络。

A mobility map, which provides maximum achievable speed on a given terrain, is essential for path planning of autonomous ground vehicles in off-road settings. While physics-based simulations play a central role in creating next-generation, high-fidelity mobility maps, they are cumbersome and expensive. For instance, a typical simulation can take weeks to run on a supercomputer and each map requires thousands of such simulations. Recent work at the U.S. Army CCDC Ground Vehicle Systems Center has shown that trained machine learning classifiers can greatly improve the efficiency of this process. However, deciding which simulations to run in order to train the classifier efficiently is still an open problem. According to PAC learning theory, data that can be separated by a classifier is expected to require $\mathcal{O}(1/ε)$ randomly selected points (simulations) to train the classifier with error less than $ε$. In this paper, building on existing algorithms, we introduce an active learning paradigm that substantially reduces the number of simulations needed to train a machine learning classifier without sacrificing accuracy. Experimental results suggest that our sampling algorithm can train a neural network, with higher accuracy, using less than half the number of simulations when compared to random sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源