论文标题

二维高阶拓扑晶体的角状态和拓扑转换与反转对称性

Corner states and topological transitions in two-dimensional higher-order topological sonic crystals with inversion symmetry

论文作者

Xiong, Zhan, Lin, Zhi-Kang, Wang, Hai-Xiao, Zhang, Xiujuan, Lu, Ming-Hui, Chen, Yan-Feng, Jiang, Jian-Hua

论文摘要

研究了具有反转对称性的宏观二维声音晶体,以揭示经典波浪系统中的高阶拓扑物理学。通过调整单个几何参数,可以同时控制大体和边缘的带拓扑。散装带隙形成拓扑结晶绝缘子具有边缘状态的声学类似物,由于边缘上的对称性减小而被覆盖。在存在镜像对称性的情况下,边缘状态的带拓扑以Zak阶段为特征,以尺寸的层次结构说明了带拓扑,这是高阶拓扑的核心。此外,边缘带隙可以闭合,而无需闭合散装带隙,从而揭示了边缘的独立拓扑过渡。散装和边缘的丰富拓扑转变可以通过在散装和表面布里鲁因区的高对称点处的对称特征值很好地描述。我们进一步分析了缩小的声音晶体中的高阶拓扑,其中略有不同的物理学,但较丰富的角和边缘现象被揭示出来。在这些系统中,可以通过控制几何形状来利用丰富的多维拓扑转换来在零,一维声学模式之间进行拓扑转移。

Macroscopic two-dimensional sonic crystals with inversion symmetry are studied to reveal higher-order topological physics in classical wave systems. By tuning a single geometry parameter, the band topology of the bulk and the edges can be controlled simultaneously. The bulk band gap forms an acoustic analog of topological crystalline insulators with edge states which are gapped due to symmetry reduction on the edges. In the presence of mirror symmetry, the band topology of the edge states can be characterized by the Zak phase, illustrating the band topology in a hierarchy of dimensions, which is at the heart of higher-order topology. Moreover, the edge band gap can be closed without closing the bulk band gap, revealing an independent topological transition on the edges. The rich topological transitions in both bulk and edges can be well-described by the symmetry eigenvalues at the high-symmetry points in the bulk and surface Brillouin zones. We further analyze the higher-order topology in the shrunken sonic crystals where slightly different physics but richer corner and edge phenomena are revealed. In these systems, the rich, multidimensional topological transitions can be exploited for topological transfer among zero-, one- and two- dimensional acoustic modes by controlling the geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源