论文标题

先前使用稀疏性从成像光谱仪数据中快速准确地检索甲烷浓度

Fast and Accurate Retrieval of Methane Concentration from Imaging Spectrometer Data Using Sparsity Prior

论文作者

Foote, Markus D., Dennison, Philip E., Thorpe, Andrew K., Thompson, David R., Jongaramrungruang, Siraput, Frankenberg, Christian, Joshi, Sarang C.

论文摘要

大气甲烷的强辐射强迫激发了人们对鉴定这种有效温室气体的天然和人为来源的兴趣。点源是定量的重要目标,人为目标具有减少排放的潜力。甲烷点源羽流检测和浓度检索先前已使用来自机载可见红外成像光谱仪的下一代(Aviris-ng)的数据证明。当前的定量方法在计算需求和检索准确性之间具有权衡,从而为处理实时数据或飞行活动中的大型数据集创造了障碍。我们提出了一种新的计算有效算法,该算法将稀疏性和反照率校正用于匹配的痕量气体浓度路径长度。使用印度艾哈迈达巴德(Ahmedab​​ad)的几个点源羽流中获取的Aviris-NG数据对新算法进行了测试。使用模拟的Aviris-NG数据验证该算法,包括已知甲烷浓度的合成羽。与先前的可靠匹配的滤镜方法相比,稀疏性和反照率校正共同将检索到的甲烷浓度路径长度增强的根平方误差降低了60.7%。背景噪声减少了2.64。该新算法能够在台式计算机上使用GPU加速进行8个多小时的时间来处理整个300 Flighline 2016 Aviris-NG印度运动。

The strong radiative forcing by atmospheric methane has stimulated interest in identifying natural and anthropogenic sources of this potent greenhouse gas. Point sources are important targets for quantification, and anthropogenic targets have potential for emissions reduction. Methane point source plume detection and concentration retrieval have been previously demonstrated using data from the Airborne Visible InfraRed Imaging Spectrometer Next Generation (AVIRIS-NG). Current quantitative methods have tradeoffs between computational requirements and retrieval accuracy, creating obstacles for processing real-time data or large datasets from flight campaigns. We present a new computationally efficient algorithm that applies sparsity and an albedo correction to matched filter retrieval of trace gas concentration-pathlength. The new algorithm was tested using AVIRIS-NG data acquired over several point source plumes in Ahmedabad, India. The algorithm was validated using simulated AVIRIS-NG data including synthetic plumes of known methane concentration. Sparsity and albedo correction together reduced the root mean squared error of retrieved methane concentration-pathlength enhancement by 60.7% compared with a previous robust matched filter method. Background noise was reduced by a factor of 2.64. The new algorithm was able to process the entire 300 flightline 2016 AVIRIS-NG India campaign in just over 8 hours on a desktop computer with GPU acceleration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源