论文标题

丝带结,电缆和手柄分解

Ribbon knots, cabling, and handle decompositions

论文作者

Hom, Jennifer, Kang, Sungkyung, Park, JungHwan

论文摘要

丝带结的融合数是构造色带盘所需的1个手柄的最小数量。丝带结的强同质融合数是带状盘补体的手柄分解中的2个手柄数的最小数量。我们证明,在电缆上,这些不变性的行为完全不同,表明(P,1)可在融合第一的任何丝带结中均具有强质量融合的第一和融合数p。我们的主要工具是Juhász-Miller-Zemke的融合数,来自结Floer同源性的扭转顺序和Hanselman-Watson的浸入式曲线的布线。

The fusion number of a ribbon knot is the minimal number of 1-handles needed to construct a ribbon disk. The strong homotopy fusion number of a ribbon knot is the minimal number of 2-handles in a handle decomposition of a ribbon disk complement. We demonstrate that these invariants behave completely differently under cabling by showing that the (p,1)-cable of any ribbon knot with fusion number one has strong homotopy fusion number one and fusion number p. Our main tools are Juhász-Miller-Zemke's bound on fusion number coming from the torsion order of knot Floer homology and Hanselman-Watson's cabling formula for immersed curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源