论文标题
丝带结,电缆和手柄分解
Ribbon knots, cabling, and handle decompositions
论文作者
论文摘要
丝带结的融合数是构造色带盘所需的1个手柄的最小数量。丝带结的强同质融合数是带状盘补体的手柄分解中的2个手柄数的最小数量。我们证明,在电缆上,这些不变性的行为完全不同,表明(P,1)可在融合第一的任何丝带结中均具有强质量融合的第一和融合数p。我们的主要工具是Juhász-Miller-Zemke的融合数,来自结Floer同源性的扭转顺序和Hanselman-Watson的浸入式曲线的布线。
The fusion number of a ribbon knot is the minimal number of 1-handles needed to construct a ribbon disk. The strong homotopy fusion number of a ribbon knot is the minimal number of 2-handles in a handle decomposition of a ribbon disk complement. We demonstrate that these invariants behave completely differently under cabling by showing that the (p,1)-cable of any ribbon knot with fusion number one has strong homotopy fusion number one and fusion number p. Our main tools are Juhász-Miller-Zemke's bound on fusion number coming from the torsion order of knot Floer homology and Hanselman-Watson's cabling formula for immersed curves.