论文标题

Allen-Cahn型方程和Kobayashi-Warren-Carter类型的晶粒边界运动模型的耦合系统中的能量散落

Energy-dissipation in a coupled system of Allen-Cahn type equation and Kobayashi-Warren-Carter type model of grain boundary motion

论文作者

Watanabe, Hiroshi, Shirakawa, Ken

论文摘要

在本文中,我们将抛物线方程的初始边界价值问题系统视为“ $ - $ $ - $η$ - $θ$模型”的广义版本,该版本由Kobayashi [16]提出。该系统是一个耦合系统:allen-cahn类型方程,如(1.1),具有给定的温度源;以及晶界运动的相位模型,称为“ kobayashi-warren型模型”。该研究的重点是一种特殊的解决方案,称为能量散文溶液,即在及时重现管理能量的能量散引力。在合适的假设下,两个主要定理,与:能量散文解决方案的存在;和大型行为;将作为本文的结果证明。

In this paper, we consider a system of initial boundary value problems for parabolic equations, as a generalized version of the "$ ϕ$-$ η$-$ θ$ model" of grain boundary motion, proposed by Kobayashi [16]. The system is a coupled system of: an Allen--Cahn type equation as in (1.1) with a given temperature source; and a phase-field model of grain boundary motion, known as "Kobayashi--Warren--Carter type model". The focus of the study is on a special kind of solution, called energy-dissipative solution, which is to reproduce the energy-dissipation of the governing energy in time. Under suitable assumptions, two Main Theorems, concerned with: the existence of energy-dissipative solution; and the large-time behavior; will be demonstrated as the results of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源