论文标题

观看和学习 - 通过物理原理在深层神经网络中转移学习的通用方法

Watch and learn -- a generalized approach for transferrable learning in deep neural networks via physical principles

论文作者

Sprague, Kyle, Carrasquilla, Juan, Whitelam, Steve, Tamblyn, Isaac

论文摘要

转移学习是指在解决机器学习任务并将其应用于紧密相关问题的解决方案时获得的知识的使用。这种方法已使计算机视觉和自然语言处理中的科学突破能够在最先进的模型中学习的权重来初始化模型的其他任务,以极大地改善其性能并节省计算时间。在这里,我们证明了一种无监督的学习方法,并具有基本的物理原理,这些方法可以完全转移到不同物理制度的统计物理问题中的问题。通过将基于复发神经网络的序列模型与广泛的深神经网络耦合,我们能够学习经典统计机械系统的平衡概率分布和粒子间相互作用模型。我们的方法,分布矛盾的学习DCL是一种一般策略,可用于各种规范的统计机械模型(ISING和POTTS)以及无序(旋转玻璃)相互作用潜力。 DCL使用从一组观察条件收集的数据,成功地推断了所有温度,热力学相,并且可以应用于不同的长度尺度。这构成了一种完全可转移的物理学学习,以可推广的方法。

Transfer learning refers to the use of knowledge gained while solving a machine learning task and applying it to the solution of a closely related problem. Such an approach has enabled scientific breakthroughs in computer vision and natural language processing where the weights learned in state-of-the-art models can be used to initialize models for other tasks which dramatically improve their performance and save computational time. Here we demonstrate an unsupervised learning approach augmented with basic physical principles that achieves fully transferrable learning for problems in statistical physics across different physical regimes. By coupling a sequence model based on a recurrent neural network to an extensive deep neural network, we are able to learn the equilibrium probability distributions and inter-particle interaction models of classical statistical mechanical systems. Our approach, distribution-consistent learning, DCL, is a general strategy that works for a variety of canonical statistical mechanical models (Ising and Potts) as well as disordered (spin-glass) interaction potentials. Using data collected from a single set of observation conditions, DCL successfully extrapolates across all temperatures, thermodynamic phases, and can be applied to different length-scales. This constitutes a fully transferrable physics-based learning in a generalizable approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源