论文标题
一维环上的berry阶段
Berry phase for a Bose gas on a one-dimensional ring
论文作者
论文摘要
我们研究了通过合成磁通管刺穿的环上强烈相互作用的一维(1D)玻色子的系统。通过费米 - 果映射,该系统与限制在环上并被螺线管(磁通管)刺穿的自旋偏置的非相互作用电子系统有关。在环上,有一个外部局部局部功能势势$ V(ϕ)=gδ(ϕ-ϕ_0)$。我们研究了与潜在$ g $的强度和颗粒数量$ n $的强度有关的与圆环周围的绝热运动相关的浆果阶段。浆果相的行为可以通过量子机械反射和隧穿通过移动屏障来解释,从而将颗粒推动围绕环。屏障产生的尖尖,可以将缺失的电荷$ΔQ$(缺少密度)与电子情况相关联(分别为玻色子)。我们表明,无法用数量$ΔQ/\ hbar \ oint \ oint \ mathbf {a} \ cdot d \ mathbf {l} $识别浆果相(即,aharonov-bohm阶段)。这意味着无法将丢失的电荷识别为(准)孔。我们指出了这种结果的联系以及对非互动系统中合成的人的最新研究。此外,对于玻色子,我们研究了弱相互作用的制度,这与1D系统中的Fermi-Bose二元性与强烈相互作用的电子有关。
We study a system of strongly interacting one-dimensional (1D) bosons on a ring pierced by a synthetic magnetic flux tube. By the Fermi-Bose mapping, this system is related to the system of spin-polarized non-interacting electrons confined on a ring and pierced by a solenoid (magnetic flux tube). On the ring there is an external localized delta-function potential barrier $V(ϕ)=g δ(ϕ-ϕ_0)$. We study the Berry phase associated to the adiabatic motion of delta-function barrier around the ring as a function of the strength of the potential $g$ and the number of particles $N$. The behavior of the Berry phase can be explained via quantum mechanical reflection and tunneling through the moving barrier which pushes the particles around the ring. The barrier produces a cusp in the density to which one can associate a missing charge $Δq$ (missing density) for the case of electrons (bosons, respectively). We show that the Berry phase (i.e., the Aharonov-Bohm phase) cannot be identified with the quantity $Δq/\hbar \oint \mathbf{A}\cdot d\mathbf{l}$. This means that the missing charge cannot be identified as a (quasi)hole. We point out to the connection of this result and recent studies of synthetic anyons in noninteracting systems. In addition, for bosons we study the weakly-interacting regime, which is related to the strongly interacting electrons via Fermi-Bose duality in 1D systems.