论文标题
探测超过凯尔(Kerr)的空间,并在引力波中进行灵感重新驱动的校正
Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves
论文作者
论文摘要
远处黑洞的爆炸性合并中的重力波编码有关其源头上存在的复杂极端时空的细节。 Kerr时空度量标准著名地描述了在总体相对论中旋转黑洞,如果存在超出该理论的影响,该怎么办?有效检验该假设的一种方法是首先获得以模型无关的方式参数偏离Kerr公制的度量。鉴于这样的指标,然后可以预测新时空中存在的黑洞的引力波形的灵感和响声部分的随之而来的校正。借助这些工具,可以通过两种不同的方法测试引力波信号,(i)Inspiral-Merger-Ringdown一致性测试和(ii)参数化测试。在本文中,我们演示了人们需要做的确切食谱。我们首先将参数化的校正得出到通用非Kerr时空的波形灵感,环和残余属性,并将其应用于两个示例以外的两个示例,每个示例都通过单个非Kerr参数参数。然后,我们预测观察到的重力波信号中所需的超越KERR参数幅度在统计上与Kerr的情况统计不一致。我们发现这两种方法给出了非常相似的界限。现有重力波事件发现的约束与X射线观测值相当,而使用宇宙探险器(激光干涉仪空间天线)的未来重力波观测可以通过两个(三个)的数量级来改善此类界限。
Gravitational waves from the explosive merger of distant black holes are encoded with details regarding the complex extreme-gravity spacetime present at their source. Famously described by the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this theory are present? One way to efficiently test this hypothesis is to first obtain a metric which parametrically deviates from the Kerr metric in a model-independent way. Given such a metric, one can then predict the ensuing corrections to both the inspiral and ringdown portions of the gravitational waveform for black holes present in the new spacetime. With these tools in hand, one can then test gravitational wave signals for such effects by two different methods, (i) inspiral-merger-ringdown consistency test, and (ii) parameterized test. In this paper, we demonstrate the exact recipe one needs to do just this. We first derive parameterized corrections to the waveform inspiral, ringdown, and remnant properties for a generic non-Kerr spacetime and apply this to two example beyond-Kerr spacetimes each parameterized by a single non-Kerr parameter. We then predict the beyond-Kerr parameter magnitudes required in an observed gravitational wave signal to be statistically inconsistent with the Kerr case in general relativity. We find that the two methods give very similar bounds. The constraints found with existing gravitational-wave events are comparable to those from x-ray observations, while future gravitational-wave observations using Cosmic Explorer (Laser Interferometer Space Antenna) can improve such bounds by two (three) orders of magnitude.