论文标题

使用基于双光谱的深卷积神经网络的非线性时间序列分类

Nonlinear Time Series Classification Using Bispectrum-based Deep Convolutional Neural Networks

论文作者

Parker, Paul A., Holan, Scott H., Ravishanker, Nalini

论文摘要

使用新技术的时间序列分类经历了近期的复兴和统计学家,主题域科学家以及商业和行业决策者的兴趣。这主要是由于技术进步所产生的大量和复杂数据的数量不断增加。一个激励的例子是Google趋势数据,这些数据表现出高度非线性的行为。尽管存在丰富的文献来解决这个问题,但现有方法主要依赖于时间序列的一阶和二阶属性,因为它们通常假定基础过程的线性性。通常,这些不足以有效地分类非线性时间序列数据,例如Google趋势数据。鉴于这些方法论上的缺陷以及在现实现象之间持续存在的非线性时间序列的丰度,我们引入了一种方法,将高阶光谱分析(HOSA)与深卷积神经网络(CNN)合并以进行分类时间序列。使用模拟数据和两个涉及Google趋势数据和电子设备能源消耗数据的激励行业示例来说明我们方法的有效性。

Time series classification using novel techniques has experienced a recent resurgence and growing interest from statisticians, subject-domain scientists, and decision makers in business and industry. This is primarily due to the ever increasing amount of big and complex data produced as a result of technological advances. A motivating example is that of Google trends data, which exhibit highly nonlinear behavior. Although a rich literature exists for addressing this problem, existing approaches mostly rely on first and second order properties of the time series, since they typically assume linearity of the underlying process. Often, these are inadequate for effective classification of nonlinear time series data such as Google Trends data. Given these methodological deficiencies and the abundance of nonlinear time series that persist among real-world phenomena, we introduce an approach that merges higher order spectral analysis (HOSA) with deep convolutional neural networks (CNNs) for classifying time series. The effectiveness of our approach is illustrated using simulated data and two motivating industry examples that involve Google trends data and electronic device energy consumption data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源