论文标题

学习视频压缩,并具有层次质量和经常性增强

Learning for Video Compression with Hierarchical Quality and Recurrent Enhancement

论文作者

Yang, Ren, Mentzer, Fabian, Van Gool, Luc, Timofte, Radu

论文摘要

在本文中,我们提出了一种层次学习的视频压缩(HLVC)方法,该方法具有三个层次质量层和一个经常性增强网络。第一层中的帧通过具有最高质量的图像压缩方法压缩。使用这些帧作为参考,我们提出了双向深度压缩(BDDC)网络以相对较高的质量压缩第二层。然后,第三层框架被提议的单运动深度压缩(SMDC)网络压缩,该网络采用单个运动图来估算多个帧的运动,从而节省了位,从而为运动信息节省了位。在我们的深度解码器中,我们开发了加权复发质量增强(WRQE)网络,该网络既将压缩帧和位流作为输入。在WRQE的复发单元格中,内存和更新信号由质量功能加权,以合理利用多帧信息以增强。在我们的HLVC方法中,层次质量有益于编码效率,因为高质量的信息分别促进了编码器和解码器侧的低质量框架的压缩和增强。最后,该实验验证了我们的HLVC方法会推进深视频压缩方法的最新方法,并且在PSNR和MS-SSIM方面,X265的“低delay P(LDP)非常快”模式优于“低delay p(LDP)”模式。项目页面位于https://github.com/renyang-home/hlvc。

In this paper, we propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network. The frames in the first layer are compressed by an image compression method with the highest quality. Using these frames as references, we propose the Bi-Directional Deep Compression (BDDC) network to compress the second layer with relatively high quality. Then, the third layer frames are compressed with the lowest quality, by the proposed Single Motion Deep Compression (SMDC) network, which adopts a single motion map to estimate the motions of multiple frames, thus saving bits for motion information. In our deep decoder, we develop the Weighted Recurrent Quality Enhancement (WRQE) network, which takes both compressed frames and the bit stream as inputs. In the recurrent cell of WRQE, the memory and update signal are weighted by quality features to reasonably leverage multi-frame information for enhancement. In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides, respectively. Finally, the experiments validate that our HLVC approach advances the state-of-the-art of deep video compression methods, and outperforms the "Low-Delay P (LDP) very fast" mode of x265 in terms of both PSNR and MS-SSIM. The project page is at https://github.com/RenYang-home/HLVC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源