论文标题
超级阶级-III。数据发行1中的无线电和光学观察结果较弱
SuperCLASS -- III. Weak lensing from radio and optical observations in Data Release 1
论文作者
论文摘要
我们描述了超级类调查中弱重力镜头的第一个结果:第一个专门设计的调查,旨在衡量单独和与光学数据互相关的无线电波长数据中弱透镜效应。我们分析了来自Subaru望远镜的1.53平方度光学数据,以及来自E-Merlin和VLA望远镜(DR1数据集)的0.26平方度无线电数据。仅在光学数据上使用标准方法学,我们由于目标区域中大量的星系超级集群而对弱透镜信号(剪切功率谱)进行显着(10 Sigma)检测。对于无线电数据,我们开发了一种新方法来测量干涉数据中星系的形状,并构建了一个模拟管道来验证该方法。然后,我们将此分析应用于我们的无线电观察结果,独立处理E-Merlin和VLA数据。我们在VLA数据中实现了每平方弧0.5的源密度,在E-Merlin数据中实现了每平方弧0.06的源密度,数字证明太小,无法单独或与光学数据交叉相关中检测到弱透镜信号。最后,我们显示了来自E-Merlin和VLA数据的可见性平面组合的初步结果,该数据将用于即将到来的完整超级数据发布。这种数据组合的方法有望提高可用弱透镜源的数量密度和可以测量其形状的保真度。
We describe the first results on weak gravitational lensing from the SuperCLASS survey: the first survey specifically designed to measure the weak lensing effect in radio-wavelength data, both alone and in cross-correlation with optical data. We analyse 1.53 square degrees of optical data from the Subaru telescope and 0.26 square degrees of radio data from the e-MERLIN and VLA telescopes (the DR1 data set). Using standard methodologies on the optical data only we make a significant (10 sigma) detection of the weak lensing signal (a shear power spectrum) due to the massive supercluster of galaxies in the targeted region. For the radio data we develop a new method to measure the shapes of galaxies from the interferometric data, and we construct a simulation pipeline to validate this method. We then apply this analysis to our radio observations, treating the e-MERLIN and VLA data independently. We achieve source densities of 0.5 per square arcmin in the VLA data and 0.06 per square arcmin in the e-MERLIN data, numbers which prove too small to allow a detection of a weak lensing signal in either the radio data alone or in cross-correlation with the optical data. Finally, we show preliminary results from a visibility-plane combination of the data from e-MERLIN and VLA which will be used for the forthcoming full SuperCLASS data release. This approach to data combination is expected to enhance both the number density of weak lensing sources available and the fidelity with which their shapes can be measured.