论文标题

动态图操作:一种一致的非阻滞方法

Dynamic Graph Operations: A Consistent Non-blocking Approach

论文作者

Chatterjee, Bapi, Peri, Sathya, Sa, Muktikanta

论文摘要

图形算法极大地为区块链,社交网络,生物网络,电信网络等提供了巨大贡献。数据量的需求不断增加,以及此类应用程序的速度,从本质上将这些应用程序从其舒适区域:静态设置运送到了充满动态更新的具有挑战性的领域。同时,多核处理器的主流化已经使动态应用程序应一旦抑制并行化就可以利用并发。因此,有效的并发动态图算法的设计和实施变得很重要。 本文报告了一个新颖的库,用于广度优先搜索(BFS),单源最短路径(SSSP)和Interness中心(BC)的并发共享内存算法(BC)。提出的算法可证明是非阻滞和可线化的。我们通过几个微基准广泛评估算法的C ++实现。实验结果证明了线程数的可伸缩性。我们的实验还突出了动态设置中静态图分析方法的局限性。

Graph algorithms enormously contribute to the domains such as blockchains, social networks, biological networks, telecommunication networks, and several others. The ever-increasing demand of data-volume, as well as speed of such applications, have essentially transported these applications from their comfort zone: static setting, to a challenging territory of dynamic updates. At the same time, mainstreaming of multi-core processors have entailed that the dynamic applications should be able to exploit concurrency as soon as parallelization gets inhibited. Thus, the design and implementation of efficient concurrent dynamic graph algorithms have become significant. This paper reports a novel library of concurrent shared-memory algorithms for breadth-first search (BFS), single-source shortest-path (SSSP), and betweenness centrality (BC) in a dynamic graph. The presented algorithms are provably non-blocking and linearizable. We extensively evaluate C++ implementations of the algorithms through several micro-benchmarks. The experimental results demonstrate the scalability with the number of threads. Our experiments also highlight the limitations of static graph analytics methods in a dynamic setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源