论文标题
一些矩形tableaux的单数非对称插孔多项式
Singular nonsymmetric Jack polynomials for some rectangular tableaux
论文作者
论文摘要
在$ n $变量中非对称插孔多项式理论的交集中,对称组的表示$ \ nathcal {s} _ {n} $一个人找到了奇异的多项式。对于参数的某些值$κ$,有插孔多项式跨越了不可约的$ \ MATHCAL {s} _ {n} $ - 模块,并由Dunkl Operators an灭。 $ \ Mathcal {s} _ {n} $ - 模块由$ n $的分区标记,称为多项式的同型。在本文中,千斤顶多项式是矢量值类型的,即标量多项式的张量产物的元素,具有反向标准的Young Tableaux的跨度,其固定分区的形状为$ n $。特别地,此分区为$ \ left(m,m,\ ldots,m \右)$,带有$ 2K $组件,并且构造的单数多项式为同类$ \ weft(mk,mk \ right)$ for参数$κ= $ $ $ $ $ 1/\ weft(m+2 \ right)$。本文包含非对称插孔多项式和表示理论的必要背景,并解释了Jucys-Murphy元素在构造中的作用。主要成分是某些光谱向量的独特性证明,即,当专门为$κ= 1/\ weft(m+2 \ right)$时,Cherednik-Dunkl运算符的Jack多项式特征值列表。该论文以讨论有理Cherednik代数的模块的相关地图进行了讨论,并说明了为任意分区找到奇异多项式的困难。
In the intersection of the theories of nonsymmetric Jack polynomials in $N$ variables and representations of the symmetric groups $\mathcal{S}_{N}$ one finds the singular polynomials. For certain values of the parameter $κ$ there are Jack polynomials which span an irreducible $\mathcal{S}_{N}$-module and are annihilated by the Dunkl operators. The $\mathcal{S}_{N}$-module is labeled by a partition of $N$, called the isotype of the polynomials. In this paper the Jack polynomials are of the vector-valued type, that is, elements of the tensor product of the scalar polynomials with the span of reverse standard Young tableaux of the shape of a fixed partition of $N$. In particular this partition is of shape $\left( m,m,\ldots,m\right) $ with $2k$ components and the constructed singular polynomials are of isotype $\left( mk,mk\right) $ for the parameter $κ=$ $1/\left( m+2\right) $. The paper contains the necessary background on nonsymmetric Jack polynomials and representation theory and explains the role of Jucys-Murphy elements in the construction. The main ingredient is the proof of uniqueness of certain spectral vectors, namely, the list of eigenvalues of the Jack polynomials for the Cherednik-Dunkl operators, when specialized to $κ=1/\left( m+2\right) $. The paper finishes with a discussion of associated maps of modules of the rational Cherednik algebra and an example illustrating the difficulty of finding singular polynomials for arbitrary partitions.