论文标题

使用分形阻抗的生物模拟适应力/位置控制

Bio-mimetic Adaptive Force/Position Control Using Fractal Impedance

论文作者

Tiseo, Carlo, Merkt, Wolfgang, Babarahmati, Keyhan Kouhkiloui, Wolfslag, Wouter, Vijayakumar, Sethu, Mistry, Michael

论文摘要

动物与复杂动力学相互作用的能力在机器人中是无与伦比的。对互动性能尤其重要的是人体动态的在线适应,可以将其建模为阻抗行为。但是,由于适应控制器增益时保持稳定性的困难,可变阻抗控制器在当前控制框架中仍然面临挑战。最近已经提出了分形阻抗控制器来解决此问题。但是,当它开始融合到所需位置和缺乏力反馈回路时,它仍然存在诸如突然跳跃的局限性。在此手稿中,对控制框架进行了两个改进,以解决这些限制。已经解决了力不连续性通过调节输出力的虚拟拮抗剂引入阻抗的调制。力跟踪已经以平行力/位置控制器体系结构进行建模。与传统方法相反,分形阻抗控制器可以在力反馈上实现搜索算法,以使其在外部环境上的行为适应其行为,而不是依靠\ textit {先验{先验性}对外部动力学的知识。本文提出的初步模拟结果显示了拟议方法的可行性,并允许评估依靠拟议的控制器进行交互时需要进行的权衡。总之,所提出的方法模仿了适应未知外部动力学的激动剂/拮抗剂系统的行为,并且可能在计算神经科学,触觉和相互作用控制中找到应用。

The ability of animals to interact with complex dynamics is unmatched in robots. Especially important to the interaction performances is the online adaptation of body dynamics, which can be modeled as an impedance behaviour. However, the variable impedance controller still possesses a challenge in the current control frameworks due to the difficulties of retaining stability when adapting the controller gains. The fractal impedance controller has been recently proposed to solve this issue. However, it still has limitations such as sudden jumps in force when it starts to converge to the desired position and the lack of a force feedback loop. In this manuscript, two improvements are made to the control framework to solve these limitations. The force discontinuity has been addressed introducing a modulation of the impedance via a virtual antagonist that modulates the output force. The force tracking has been modeled after the parallel force/position controller architecture. In contrast to traditional methods, the fractal impedance controller enables the implementation of a search algorithm on the force feedback to adapt its behaviour on the external environment instead of on relying on \textit{a priori} knowledge of the external dynamics. Preliminary simulation results presented in this paper show the feasibility of the proposed approach, and it allows to evaluate the trade-off that needs to be made when relying on the proposed controller for interaction. In conclusion, the proposed method mimics the behaviour of an agonist/antagonist system adapting to unknown external dynamics, and it may find application in computational neuroscience, haptics, and interaction control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源