论文标题
无限维堆和仿射施普林斯理论上的不良皮带
Perverse sheaves on infinite-dimensional stacks, and affine Springer theory
论文作者
论文摘要
这项工作的目的是在L-ADIC LG-Equivariant Sheaves的无限类别上构建一个不限制的T结构,并表明Aggine Grothendieck-Springer Sheaf S是不正当的。此外,S是其限制到``紧凑型''元素的限制,并定期半简单。请注意,经典方法不适用于我们的情况,因为LG和LG是无限二二维的Indshemes。
The goal of this work is to construct a perverse t-structure on the infinity-category of l-adic LG-equivariant sheaves on the loop Lie algebra Lg and to show that the affine Grothendieck-Springer sheaf S is perverse. Moreover, S is an intermediate extension of its restriction to the locus of ``compact" elements with regular semi-simple reduction. Note that classical methods do not apply in our situation because LG and Lg are infinite-dimensional ind-schemes.