论文标题

erdős-ko-rado定理,用于残留类环上的矢量空间

Erdős-Ko-Rado theorem for vector spaces over residue class rings

论文作者

Guo, Jun

论文摘要

令$ h = \ prod_ {i = 1}^{t} p_i^{s_i} $是将其分解为独特的素数的产物,$ \ mathbb {z} _ {h} _ {h} $是残基类别rang rand ring modulo $ h $。令$ \ mathbb {z} _ {h}^{n} $为$ n $ -dimensional Row vector Space上的$ \ Mathbb {z} _ {h} $。 $ \ mathbb {z} _ {h}^n $的广义Grassmann图,由$ g_r(m,n,\ mathbb {z} _ {h} _ {h})$(简称为$ g_r $),所有$ m $ -m $ -subspaces of $ \ subspaces of $ \ \ \ \ \ \ \ \ \ \ \ s iTs at iTs and as as as as as as as as as at iTs相邻如果它们的交叉点为尺寸$> m-r $,其中$ 2 \ leq r \ leq m+1 \ leq n $。在本文中,我们确定了$ g_r $的最大集团的总数和几何结构。结果,我们获得了$ \ mathbb {z} _ {h}^{n} $的erdős-ko-rado定理。

Let $h=\prod_{i=1}^{t}p_i^{s_i}$ be its decomposition into a product of powers of distinct primes, and $\mathbb{Z}_{h}$ be the residue class ring modulo $h$. Let $\mathbb{Z}_{h}^{n}$ be the $n$-dimensional row vector space over $\mathbb{Z}_{h}$. A generalized Grassmann graph for $\mathbb{Z}_{h}^n$, denoted by $G_r(m,n,\mathbb{Z}_{h})$ ($G_r$ for short), has all $m$-subspaces of $\mathbb{Z}_{h}^n$ as its vertices, and two distinct vertices are adjacent if their intersection is of dimension $>m-r$, where $2\leq r\leq m+1\leq n$. In this paper, we determine the clique number and geometric structures of maximum cliques of $G_r$. As a result, we obtain the Erdős-Ko-Rado theorem for $\mathbb{Z}_{h}^{n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源