论文标题
舒伯特多项式的Kohnert规则的徒证明
A bijective proof of Kohnert's rule for Schubert polynomials
论文作者
论文摘要
科恩特(Kohnert)提出了舒伯特多项式的第一个单一阳性公式,是从置换的Rothe图获得的某些单位细胞图的生成多项式。 Billey,Jockusch和Stanley为Schubert多项式提供了第一个验证的公式,作为对置换术的简化单词兼容序列的生成多项式。在本文中,我们在这两个模型之间进行了明确的培养,从而明确证明了科纳特对舒伯特多项式的规则。
Kohnert proposed the first monomial positive formula for Schubert polynomials as the generating polynomial for certain unit cell diagrams obtained from the Rothe diagram of a permutation. Billey, Jockusch and Stanley gave the first proven formula for Schubert polynomials as the generating polynomial for compatible sequences of reduced words of a permutation. In this paper, we give an explicit bijection between these two models, thereby definitively proving Kohnert's rule for Schubert polynomials.