论文标题

人工智能研究中透明度和可重复性的重要性

The importance of transparency and reproducibility in artificial intelligence research

论文作者

Haibe-Kains, Benjamin, Adam, George Alexandru, Hosny, Ahmed, Khodakarami, Farnoosh, Board, MAQC Society, Waldron, Levi, Wang, Bo, McIntosh, Chris, Kundaje, Anshul, Greene, Casey S., Hoffman, Michael M., Leek, Jeffrey T., Huber, Wolfgang, Brazma, Alvis, Pineau, Joelle, Tibshirani, Robert, Hastie, Trevor, Ioannidis, John P. A., Quackenbush, John, Aerts, Hugo J. W. L.

论文摘要

在他们的研究中,McKinney等人。显示了人工智能对乳腺癌筛查的高潜力。但是,缺乏详细的方法和计算机代码破坏了其科学价值。我们确定了麦金尼等人面临的阻碍透明和可再现的AI研究的障碍,并提供了对更广泛领域的影响的解决方案。

In their study, McKinney et al. showed the high potential of artificial intelligence for breast cancer screening. However, the lack of detailed methods and computer code undermines its scientific value. We identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al and provide solutions with implications for the broader field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源