论文标题

弱监督的对象本地化,用于几次学习和细粒度的少量学习

Weakly-supervised Object Localization for Few-shot Learning and Fine-grained Few-shot Learning

论文作者

He, Xiaojian, Lin, Jinfu, Shen, Junming

论文摘要

很少有射击学习(FSL)旨在从很少的样本中学习新颖的视觉类别,这在现实世界应用中是一个具有挑战性的问题。许多少数分类的方法在一般图像上可以很好地学习全局表示。但是,由于缺乏微妙和本地信息,他们无法同时处理细粒度类别。我们认为本地化是一种有效的方法,因为它直接提供了判别区域,这对于低数据制度中的通用分类和细粒度分类至关重要。在本文中,我们提出了一个基于自我注意的互补模块(SAC模块),以实现弱监督的对象定位,更重要的是生产激活的面具,以选择判别性深层描述符,以进行几次射击分类。基于每个选定的深层描述符,语义比对模块(SAM)计算查询和支持图像之间的语义比对距离以提高分类性能。广泛的实验表明,我们的方法在各种设置下,尤其是在精细粒度的几弹性任务下,优于基准数据集上的最新方法。此外,在训练MiniimageNet上的模型并在不同数据集上评估该模型时,我们的方法比以前的方法具有优越的性能,证明了其卓越的概括能力。额外的可视化表明,提出的方法可以将关键对象定位更多间隔。

Few-shot learning (FSL) aims to learn novel visual categories from very few samples, which is a challenging problem in real-world applications. Many methods of few-shot classification work well on general images to learn global representation. However, they can not deal with fine-grained categories well at the same time due to a lack of subtle and local information. We argue that localization is an efficient approach because it directly provides the discriminative regions, which is critical for both general classification and fine-grained classification in a low data regime. In this paper, we propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization, and more importantly produce the activated masks for selecting discriminative deep descriptors for few-shot classification. Based on each selected deep descriptor, Semantic Alignment Module (SAM) calculates the semantic alignment distance between the query and support images to boost classification performance. Extensive experiments show our method outperforms the state-of-the-art methods on benchmark datasets under various settings, especially on the fine-grained few-shot tasks. Besides, our method achieves superior performance over previous methods when training the model on miniImageNet and evaluating it on the different datasets, demonstrating its superior generalization capacity. Extra visualization shows the proposed method can localize the key objects more interval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源