论文标题

在未来的无线网络中启用AI:数据生命周期观点

Enabling AI in Future Wireless Networks: A Data Life Cycle Perspective

论文作者

Nguyen, Dinh C., Cheng, Peng, Ding, Ming, Lopez-Perez, David, Pathirana, Pubudu N., Li, Jun, Seneviratne, Aruna, Li, Yonghui, Poor, H. Vincent

论文摘要

近年来,移动计算和物联网(IoT)网络的快速部署,这主要归因于无线系统的通信和感应功能的增加。设想将大数据分析,广泛的计算以及最终人工智能(AI)部署在物联网之上,并创建一个由数据驱动的AI展示的新世界。在这种情况下,合并AI和无线通信的一种新颖的范式,称为无线AI,将AI边界推向网络边缘,被广泛认为是未来智能网络演变的关键推动者。为此,我们从数据驱动的角度进行了对无线AI最新研究的全面调查。具体来说,我们首先提出了一种新颖的无线AI体系结构,该体系结构涵盖了无线网络中的五个关键数据驱动的AI主题,包括传感AI,网络设备AI,访问AI,用户设备AI和数据提供AI。然后,对于每个数据驱动的AI主题,我们介绍了使用AI方法来解决新兴数据相关问题的概述,并显示AI如何赋予无线网络功能。特别是,与其他相关的调查论文相比,我们在各种数据驱动域中的无线AI应用程序提供了深入的讨论,其中AI证明对无线网络设计和优化非常有用。最后,还讨论了研究挑战和未来的视野,以刺激这一有前途的领域的进一步研究。

Recent years have seen rapid deployment of mobile computing and Internet of Things (IoT) networks, which can be mostly attributed to the increasing communication and sensing capabilities of wireless systems. Big data analysis, pervasive computing, and eventually artificial intelligence (AI) are envisaged to be deployed on top of the IoT and create a new world featured by data-driven AI. In this context, a novel paradigm of merging AI and wireless communications, called Wireless AI that pushes AI frontiers to the network edge, is widely regarded as a key enabler for future intelligent network evolution. To this end, we present a comprehensive survey of the latest studies in wireless AI from the data-driven perspective. Specifically, we first propose a novel Wireless AI architecture that covers five key data-driven AI themes in wireless networks, including Sensing AI, Network Device AI, Access AI, User Device AI and Data-provenance AI. Then, for each data-driven AI theme, we present an overview on the use of AI approaches to solve the emerging data-related problems and show how AI can empower wireless network functionalities. Particularly, compared to the other related survey papers, we provide an in-depth discussion on the Wireless AI applications in various data-driven domains wherein AI proves extremely useful for wireless network design and optimization. Finally, research challenges and future visions are also discussed to spur further research in this promising area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源