论文标题

在曲线上的抛物线束模量的Abel-Jacobi地图上

On Abel-Jacobi maps of moduli of parabolic bundles over a curve

论文作者

Chakraborty, Sujoy

论文摘要

令$ c $为非语言复合物投影曲线,而$ \ Mathcal {l} $ e $ c $上的1度1套。令$ \ MATHCAL {M}_α:= \ Mathcal {M}(r,\ \ \ \ \ \ \ \ \ \ \ \ na),α)$表示$ s $等价类的模量空间 - 抛物性等级的固定等级$ r $ $ r $,clistinant $ $ r $,capistinant $ \ nationant $ \ nathcal $ \ nathcal {l} $,全牌$ a $ a $ a $。令$ n = $ dim $ \ nathcal {m}_α$。我们的目标是在$ k = 2,n-1 $的情况下以$ \ mathcal {m}_α$进行ABEL-JACOBI地图研究。当$ K = N-1 $时,我们证明Abel-Jacobi地图是拆分陈述。当$ k = 2 $和$ r = 2 $时,我们表明亚伯-Jacobi地图是同构。

Let $C$ be a nonsingular complex projective curve, and $\mathcal{L}$ e a line bundle of degree 1 on $C$. Let $\mathcal{M}_α := \mathcal{M}(r,\mathcal{L},α)$ denote the moduli space of $S$-equivalence classes of Parabolic stable bundles of fixed rank $r$, determinant $\mathcal{L}$, full flags and generic weight $α$. Let $n=$ dim$\mathcal{M}_α$. We aim to study the Abel-Jacobi maps for $\mathcal{M}_α$ in the cases $k=2,n-1$. When $k=n-1$, we prove that the Abel-Jacobi map is a split surjection. When $k=2$ and $r=2$, we show that the Abel-Jacobi map is an isomorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源