论文标题

自主揭示超冷液体中隐藏的局部结构

Autonomously revealing hidden local structures in supercooled liquids

论文作者

Boattini, Emanuele, Marín-Aguilar, Susana, Mitra, Saheli, Foffi, Giuseppe, Smallenburg, Frank, Filion, Laura

论文摘要

凝结物质科学中很少有问题被证明与超冷液体和眼镜中的结构与动态之间的相互作用一样难以解开。难题:靠近玻璃过渡,动力学急剧下降,并变得异质,而结构似乎在很大程度上不受干扰。然而,在很大程度上不受干扰的是与不受干扰的人不同,许多研究试图通过利用动态信息来识别“缓慢”的局部结构。尽管如此,问题仍然开放:纯粹是结构信息的慢速动态的关键是吗?如果是这样,是否可以在没有任何动态信息的情况下确定相关结构?在这里,我们使用新开发的无监督的机器学习(UML)算法来识别三个原型玻璃板中的结构异质性。在每个系统中,UML方法自主设计一个纯粹基于单个快照中结构变化的订单参数。令人印象深刻的是,该顺序参数与动态异质性密切相关。此外,随着我​​们远离玻璃转变,与慢速颗粒相关的结构特征消失了。我们的结果表明,即使在无序系统中,机器学习技术也可以检测结构模式的力量,并为揭开玻璃材料缓慢动态的结构起源提供了新的前进方法。

Few questions in condensed matter science have proven as difficult to unravel as the interplay between structure and dynamics in supercooled liquids and glasses. The conundrum: close to the glass transition, the dynamics slow down dramatically and become heterogeneous while the structure appears largely unperturbed. Largely unperturbed, however, is not the same as unperturbed, and many studies have attempted to identify "slow" local structures by exploiting dynamical information. Nonetheless, the question remains open: is the key to the slow dynamics imprinted in purely structural information? And if so, is there a way to determine the relevant structures without any dynamical information? Here, we use a newly developed unsupervised machine learning (UML) algorithm to identify structural heterogeneities in three archetypical glass formers. In each system, the UML approach autonomously designs an order parameter based purely on structural variation within a single snapshot. Impressively, this order parameter strongly correlates with the dynamical heterogeneity. Moreover, the structural characteristics linked to slow particles disappear as we move away from the glass transition. Our results demonstrate the power of machine learning techniques to detect structural patterns even in disordered systems, and provide a new way forward for unraveling the structural origins of the slow dynamics of glassy materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源