论文标题
在人工到机器人任务转移中利用符合人体工程学的先验
Exploiting Ergonomic Priors in Human-to-Robot Task Transfer
论文作者
论文摘要
近年来,通过引入直观地教授机器人任务为导向的行为的手段,通过示范提出了多功能自主机器人的发展发生了蓬勃发展。在本文中,提出了一种基于示范编程的方法,以从受限的运动数据中学习无空间策略。使用此功能的主要优点是通过重新定位系统冗余来概括任务,以及可以用另一个不同的链接编号和长度完全替换整个系统的能力,同时仍然准确地重复受相同约束的任务。该方法的有效性已在3链接模拟和使用人类主题作为示威者的现实世界实验中证明,并通过对7DOF物理机器人的任务再现进行了验证。在仿真中,该方法可以准确地使用五个数据点产生的错误小于10^-14。该方法显示出在模拟的3DOF机器人操纵器控制问题中胜过当前最新方法,其中使用学习的约束来复制运动。在控制如何解决冗余可以避免障碍物的任务中,还证明了系统空空间组件的重新定位。最后,在现实世界实验中使用人类主题的演示进行了验证,该方法将学习的任务空间轨迹转移到不同实施例的7DOF物理机器人上。
In recent years, there has been a booming shift in the development of versatile, autonomous robots by introducing means to intuitively teach robots task-oriented behaviour by demonstration. In this paper, a method based on programming by demonstration is proposed to learn null space policies from constrained motion data. The main advantage to using this is generalisation of a task by retargeting a systems redundancy as well as the capability to fully replace an entire system with another of varying link number and lengths while still accurately repeating a task subject to the same constraints. The effectiveness of the method has been demonstrated in a 3-link simulation and a real world experiment using a human subject as the demonstrator and is verified through task reproduction on a 7DoF physical robot. In simulation, the method works accurately with even as little as five data points producing errors less than 10^-14. The approach is shown to outperform the current state-of-the-art approach in a simulated 3DoF robot manipulator control problem where motions are reproduced using learnt constraints. Retargeting of a systems null space component is also demonstrated in a task where controlling how redundancy is resolved allows for obstacle avoidance. Finally, the approach is verified in a real world experiment using demonstrations from a human subject where the learnt task space trajectory is transferred onto a 7DoF physical robot of a different embodiment.