论文标题
用户级保护隐私的联合学习:分析和绩效优化
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
论文作者
论文摘要
联合学习(FL)是一种协作机器学习框架,能够从移动终端(MTS)中保存私人数据,同时将数据培训为有用的模型。但是,从信息理论的角度来看,好奇的服务器仍然可以从MTS上传的共享模型中推断出私人信息。为了解决这个问题,我们首先利用当地差异隐私(LDP)的概念,并通过向共享模型添加人造噪声,然后将它们上传到服务器中,提出用户级差异隐私(UDP)算法。根据我们的分析,UDP框架可以实现$(ε_{i},Δ_{i})$ - LDP,用于$ i $ -th MT,通过改变人造噪声过程的差异,具有可调节的隐私保护水平。然后,我们为UDP算法得出了理论收敛的上限。它表明,存在最佳的沟通次数,以实现最佳的学习表现。更重要的是,我们提出了一次通信回合折扣(CRD)方法。与启发式搜索方法相比,所提出的CRD方法可以在搜索的计算复杂性和收敛性能之间实现更好的权衡。广泛的实验表明,使用拟议的CRD方法使用我们的UDP算法可以有效提高给定隐私保护水平的训练效率和模型质量。
Federated learning (FL), as a type of collaborative machine learning framework, is capable of preserving private data from mobile terminals (MTs) while training the data into useful models. Nevertheless, from a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs. To address this problem, we first make use of the concept of local differential privacy (LDP), and propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers. According to our analysis, the UDP framework can realize $(ε_{i}, δ_{i})$-LDP for the $i$-th MT with adjustable privacy protection levels by varying the variances of the artificial noise processes. We then derive a theoretical convergence upper-bound for the UDP algorithm. It reveals that there exists an optimal number of communication rounds to achieve the best learning performance. More importantly, we propose a communication rounds discounting (CRD) method. Compared with the heuristic search method, the proposed CRD method can achieve a much better trade-off between the computational complexity of searching and the convergence performance. Extensive experiments indicate that our UDP algorithm using the proposed CRD method can effectively improve both the training efficiency and model quality for the given privacy protection levels.