论文标题

在稳态的亚稳定性中,在费米样颗粒的模型中

Metastability on the steady states in a Fermi-like model of counterflowing particles

论文作者

Stock, E. V., da Silva, R.

论文摘要

在这项工作中,我们提出了先前定义的一维颗粒模型的一维版本的二维扩展,该版本考虑了适应的费米 - 迪拉克分布来描述过渡概率。在该模型的这种修改和扩展版本中,我们认为只有不同物种的颗粒相互作用,并且它们通过二维矩形晶格的细胞跳跃,并考虑到扩散和散射方面的概率。我们表明,对于足够低的随机性($α\ geq 10 $),如果系统的平均密度在交叉值附近的平均密度($ρ_{c} $),则系统可以放松到移动自组织的自组织稳态稳态(车道形成)或不动状态(clog)。我们还表明,对于某些合适的物种混合,我们特殊存在3种不同的情况:(i)固定的,(ii)由泳道组织的移动,以及(iii)在没有车道形成的情况下,以相同的密度值。我们所有的结果均通过进行蒙特卡洛模拟获得。

In this work we propose a two-dimensional extension of a previously defined one-dimensional version of a model of counterflowing particles, which considers an adapted Fermi-Dirac distribution to describe the transition probabilities. In this modified and extended version of the model, we consider that only particles of different species interact and they hop through the cells of a two dimensional rectangular lattice with probabilities taking into account diffusive and scattering aspects. We show that for a sufficiently low level of randomness ($α\geq 10$), the system can relax to a mobile self-organized steady state of counterflow (lane formation) or to an immobile state (clog) depending sensitively on the initial conditions if the system has an average density near the crossover value ($ρ_{c}$). We also show that for certain suitable mixing of the species, we peculiarly have 3 different situations: (i) The immobile,(ii) Mobile organized by lanes, and (iii) Mobile without lane formation for the same density value. All of our results were obtained by performing Monte Carlo simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源