论文标题

使用计数级弱的监督进行人群计数

Towards Using Count-level Weak Supervision for Crowd Counting

论文作者

Lei, Yinjie, Liu, Yan, Zhang, Pingping, Liu, Lingqiao

论文摘要

大多数现有的人群计数方法都需要对象位置级注释,即将点放在对象的中心。虽然比边界框或像素级注释要简单,但是获得此注释仍然是劳动密集型且耗时的,尤其是对于具有高度拥挤的场景的图像而言。另一方面,在许多实际情况下,只知道物体总数的较弱注释几乎毫不费力。因此,希望开发一种可以从计数级注释中有效训练模型的学习方法。为此,本文研究了弱监督人群计数的问题,该问题仅从少量的位置级注释(完全监督)中学习了模型,但大量的计数级注释(弱监督)。为了在这种情况下进行有效的训练,我们观察到,将密度图的积分回归到对象计数的直接解决方案不够,并且在预测的弱宣布图像的预测密度图上引入更强的正则化是有益的。我们设计了一种简单的效率训练策略,即多次辅助任务培训(MATT),以构建正规化,以限制生成的密度图的自由度。通过对现有数据集的广泛实验和新提出的数据集,我们验证了提出的弱监督方法的有效性,并证明了其优于现有解决方案的性能。

Most existing crowd counting methods require object location-level annotation, i.e., placing a dot at the center of an object. While being simpler than the bounding-box or pixel-level annotation, obtaining this annotation is still labor-intensive and time-consuming especially for images with highly crowded scenes. On the other hand, weaker annotations that only know the total count of objects can be almost effortless in many practical scenarios. Thus, it is desirable to develop a learning method that can effectively train models from count-level annotations. To this end, this paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised). To perform effective training in this scenario, we observe that the direct solution of regressing the integral of density map to the object count is not sufficient and it is beneficial to introduce stronger regularizations on the predicted density map of weakly-annotated images. We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps. Through extensive experiments on existing datasets and a newly proposed dataset, we validate the effectiveness of the proposed weakly-supervised method and demonstrate its superior performance over existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源