论文标题

分散Fermi-Ulam模型

Dispersing Fermi-Ulam Models

论文作者

De Simoi, Jacopo, Dolgopyat, Dmitry

论文摘要

我们研究了一类天然的费米 - 乌拉姆模型,这些模型具有良好的双曲性特性,并称为分散Fermi-Ulam模型。在非常温和的复杂性假设下,使用受双曲线台球理论启发的工具,是我们系统的生长引理。这使我们能够获得分散Fermi-Ulam模型的终身制性。因此,此类系统的几乎每个轨道都是振荡的。

We study a natural class of Fermi-Ulam Models that features good hyperbolicity properties and that we call dispersing Fermi-Ulam models. Using tools inspired by the theory of hyperbolic billiards we prove, under very mild complexity assumptions, a Growth Lemma for our systems. This allows us to obtain ergodicity of dispersing Fermi-Ulam Models. It follows that almost every orbit of such systems is oscillatory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源