论文标题

调整为凸优化:多项式调谐器用于多参数组合抽样器

Tuning as convex optimisation: a polynomial tuner for multi-parametric combinatorial samplers

论文作者

Bendkowski, Maciej, Bodini, Olivier, Dovgal, Sergey

论文摘要

组合采样器是为大尺寸和精确生成的大型随机组合结构而设计的算法方案,例如无上下文单词,各种树状数据结构,地图,块状,RNA分子。可以将它们适应与其他参数组合,从而更加灵活地控制参数化组合模式的输出曲线。一个人可以控制树木的叶子数量,树中节点度的轮廓或生成的字符串中某些子图案的数量。但是,这种灵活的控制需要额外的非平凡调整程序。 使用凸优化的技术,我们为多参数组合规范提供了一种有效的调整算法。我们的算法在系统描述长度,调谐参数的数量,规范中的组合类数以及总目标大小的对数中起作用多项式时间。我们证明了我们的方法在一系列实际示例中的有效性,包括理性,代数和所谓的Pólya规范。我们展示了如何将我们的方法适应多种不太典型的组合构建体,包括对称多项式,标记的集合和具有基数下限的循环,简单的增加树木或替代品。最后,我们讨论了原型调谐器实施的一些实际方面,并提供了基准结果。

Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源