论文标题

4D动态医学图像的时空体积插值网络

A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image

论文作者

Guo, Yuyu, Bi, Lei, Ahn, Euijoon, Feng, Dagan, Wang, Qian, Kim, Jinman

论文摘要

由于辐射剂量较大,图像扫描和重建时间较长,通常会限制动态医学成像的应用。现有的方法试图通过插值获得的图像体积之间的体积来减少动态序列。但是,这些方法仅限于2D图像和/或无法支持图像体积序列之间运动的大变化。在本文中,我们提出了专为4D动态医学图像设计的时空体积插值网络(SVIN)。 SVIN引入双网络:首先是时空运动网络,它利用3D卷积神经网络(CNN)进行无监督的参数体积登记,以从两图表量中得出时空运动场。第二个是顺序体积插值网络,该网络使用派生的运动场与基于回归的新模块一起插值图像体积,以表征功能器官结构中的周期性运动周期。我们还引入了一种自适应多尺度体系结构,以捕获体积大型解剖运动。实验结果表明,我们的SVIN优于最先进的时间医学插值方法和自然视频插值方法,这些方法已扩展以支持体积图像。我们的消融研究进一步说明了我们的运动网络能够更好地代表与最先进的无监督医学注册方法相比的大型功能运动。

Dynamic medical imaging is usually limited in application due to the large radiation doses and longer image scanning and reconstruction times. Existing methods attempt to reduce the dynamic sequence by interpolating the volumes between the acquired image volumes. However, these methods are limited to either 2D images and/or are unable to support large variations in the motion between the image volume sequences. In this paper, we present a spatiotemporal volumetric interpolation network (SVIN) designed for 4D dynamic medical images. SVIN introduces dual networks: first is the spatiotemporal motion network that leverages the 3D convolutional neural network (CNN) for unsupervised parametric volumetric registration to derive spatiotemporal motion field from two-image volumes; the second is the sequential volumetric interpolation network, which uses the derived motion field to interpolate image volumes, together with a new regression-based module to characterize the periodic motion cycles in functional organ structures. We also introduce an adaptive multi-scale architecture to capture the volumetric large anatomy motions. Experimental results demonstrated that our SVIN outperformed state-of-the-art temporal medical interpolation methods and natural video interpolation methods that have been extended to support volumetric images. Our ablation study further exemplified that our motion network was able to better represent the large functional motion compared with the state-of-the-art unsupervised medical registration methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源