论文标题

CFT中的广义Nachtmann定理

A Generalized Nachtmann Theorem in CFT

论文作者

Kundu, Sandipan

论文摘要

洛伦兹(Lorentzian Signature)中统一量子场理论的相关因子遵守某些分析性和阳性特性。为了在超过两个维度上进行统一的CFT进行交互,我们表明这些属性对出现在主要运营商Opes中的最小扭曲操作员的家族构成了一般限制。特别是,我们重新延伸并扩展了凸定理,该定理指出,对于任何标量级的反射对称性OPE中,旋转都出现的最小扭曲算子的家族,扭曲必须单调地增加自旋的凸功能。我们的论点是完全非扰动性的,它也适用于单一CFT中非相同标量原则的OPE,从而限制了OPE中出现的旋转算子的扭曲。最后,我们认为相同的方法也对某些CFT相关器的regge行为施加了约束。

Correlators of unitary quantum field theories in Lorentzian signature obey certain analyticity and positivity properties. For interacting unitary CFTs in more than two dimensions, we show that these properties impose general constraints on families of minimal twist operators that appear in the OPEs of primary operators. In particular, we rederive and extend the convexity theorem which states that for the family of minimal twist operators with even spins appearing in the reflection-symmetric OPE of any scalar primary, twist must be a monotonically increasing convex function of the spin. Our argument is completely non-perturbative and it also applies to the OPE of nonidentical scalar primaries in unitary CFTs, constraining the twist of spinning operators appearing in the OPE. Finally, we argue that the same methods also impose constraints on the Regge behavior of certain CFT correlators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源