论文标题

用于多体扰动扩展的量子准蒙特卡洛技术

Quantum Quasi-Monte Carlo Technique for Many-Body Perturbative Expansions

论文作者

Maček, Marjan, Dumitrescu, Philipp T., Bertrand, Corentin, Triggs, Bill, Parcollet, Olivier, Waintal, Xavier

论文摘要

高阶扰动理论已经看到了量子多体系统的受控计算的最新复兴,即使在强耦合下也是如此。我们使用低静止序列适应此问题的整合方法。他们的表现极高,最先进的图形蒙特卡洛。在实际应用中,我们显示了几个数量级的加速,缩放量的速度速度为$ 1/n $的样本号$ n $;蒙特卡洛中的参数速度比$ 1/\ sqrt {n} $快。我们用量子点中的近野脊的解决方案说明了我们的技术,在那里它允许大量参数扫描。

High order perturbation theory has seen an unexpected recent revival for controlled calculations of quantum many-body systems, even at strong coupling. We adapt integration methods using low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic Monte Carlo. In practical applications, we show speed-ups of several orders of magnitude with scaling as fast as $1/N$ in sample number $N$; parametrically faster than $1/\sqrt{N}$ in Monte Carlo. We illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows large parameter sweeps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源