论文标题

数据评估的分销框架

A Distributional Framework for Data Valuation

论文作者

Ghorbani, Amirata, Kim, Michael P., Zou, James

论文摘要

Shapley Value是游戏理论的经典概念,历史上是用来量化群体中个人的贡献的,并且最近应用于训练机器学习模型时将值分配给数据点。尽管它具有基本的作用,但数据Shapley框架的关键限制是它仅为固定数据集中的点提供估值。它不考虑数据的统计方面,也没有给出有关数据集之外的点的推理方法。为了解决这些局限性,我们提出了一个新颖的框架 - 分布莎普利 - 在其中一个点的值在基础数据分布的背景下定义。我们证明,分配沙普利具有多种理想的统计特性。例如,在对数据点本身和基础数据分布的扰动下,这些值是稳定的。我们利用这些属性来开发一种新算法来估算数据的值,该算法具有正式的保证,并且比最新的数量级要比最新的数量级来计算(非分布性)数据shapley值。我们将分销沙普利应用于各种数据集,并在数据市场设置中证明其效用。

Shapley value is a classic notion from game theory, historically used to quantify the contributions of individuals within groups, and more recently applied to assign values to data points when training machine learning models. Despite its foundational role, a key limitation of the data Shapley framework is that it only provides valuations for points within a fixed data set. It does not account for statistical aspects of the data and does not give a way to reason about points outside the data set. To address these limitations, we propose a novel framework -- distributional Shapley -- where the value of a point is defined in the context of an underlying data distribution. We prove that distributional Shapley has several desirable statistical properties; for example, the values are stable under perturbations to the data points themselves and to the underlying data distribution. We leverage these properties to develop a new algorithm for estimating values from data, which comes with formal guarantees and runs two orders of magnitude faster than state-of-the-art algorithms for computing the (non-distributional) data Shapley values. We apply distributional Shapley to diverse data sets and demonstrate its utility in a data market setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源