论文标题

高维的随机几何图

Random geometric graphs in high dimension

论文作者

Erba, Vittorio, Ariosto, Sebastiano, Gherardi, Marco, Rotondo, Pietro

论文摘要

许多机器学习算法用于降低维度和流动学习杠杆,以计算最近邻居到数据集的每个点以执行其任务。这些接近性关系定义了所谓的几何图,如果两个节点彼此足够接近,则将两个节点链接在一起。随机几何图,其中节点的位置是在$ \ Mathbb {r}^{d} $的子集中随机生成的,它提供了一个无效的模型来研究数据集和机器学习算法的典型属性。到目前为止,大多数文献都集中在低维随机几何图的表征上,而机器学习中典型的典型数据集则活在高维空间中($ d \ gg 10^{2} $)。在这项工作中,我们考虑了硬和软随机几何图的无限尺寸限制,并展示了如何计算给定有限尺寸$ k $的平均子图数,例如$ k $ cliques的平均数量。该分析强调,局部可观察到的行为取决于所选的集合:具有连续激活函数的软随机几何图会收敛到Erdös-rényi图提供的幼稚的无限尺寸限制,而硬随机几何图可以显示出与其系统的系统偏差。我们提供了数值证据,表明我们的分析见解(无限维度)也为维度$ d \ gtrsim10 $提供了良好的近似值。

Many machine learning algorithms used for dimensional reduction and manifold learning leverage on the computation of the nearest neighbours to each point of a dataset to perform their tasks. These proximity relations define a so-called geometric graph, where two nodes are linked if they are sufficiently close to each other. Random geometric graphs, where the positions of nodes are randomly generated in a subset of $\mathbb{R}^{d}$, offer a null model to study typical properties of datasets and of machine learning algorithms. Up to now, most of the literature focused on the characterization of low-dimensional random geometric graphs whereas typical datasets of interest in machine learning live in high-dimensional spaces ($d \gg 10^{2}$). In this work, we consider the infinite dimensions limit of hard and soft random geometric graphs and we show how to compute the average number of subgraphs of given finite size $k$, e.g. the average number of $k$-cliques. This analysis highlights that local observables display different behaviors depending on the chosen ensemble: soft random geometric graphs with continuous activation functions converge to the naive infinite dimensional limit provided by Erdös-Rényi graphs, whereas hard random geometric graphs can show systematic deviations from it. We present numerical evidence that our analytical insights, exact in infinite dimensions, provide a good approximation also for dimension $d\gtrsim10$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源