论文标题

汉密尔顿$(k/2)$ - $ k $均匀超图的最低学位阈值

Minimum degree thresholds for Hamilton $(k/2)$-cycles in $k$-uniform hypergraphs

论文作者

Han, Hiep, Han, Jie, Zhao, Yi

论文摘要

For any even integer $k\ge 6$, integer $d$ such that $k/2\le d\le k-1$, and sufficiently large $n\in (k/2)\mathbb N$, we find a tight minimum $d$-degree condition that guarantees the existence of a Hamilton $(k/2)$-cycle in every $k$-uniform hypergraph on $n$ vertices.当$ n \ in K \ Mathbb n $中时,该学位条件与Rödl,Ruciński和Szemerédi提供的完美匹配的存在相吻合(以$ d = k-1 $)和Treglown和Zhao($ d = k-1 $)和Zhao($ d \ ge k/2 $),因此我们的结果会在这种情况下得到增强。

For any even integer $k\ge 6$, integer $d$ such that $k/2\le d\le k-1$, and sufficiently large $n\in (k/2)\mathbb N$, we find a tight minimum $d$-degree condition that guarantees the existence of a Hamilton $(k/2)$-cycle in every $k$-uniform hypergraph on $n$ vertices. When $n\in k\mathbb N$, the degree condition coincides with the one for the existence of perfect matchings provided by Rödl, Ruciński and Szemerédi (for $d=k-1$) and Treglown and Zhao (for $d\ge k/2$), and thus our result strengthens theirs in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源